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Abstract We introduce an interacting particle model in a random media and show that this
particle process is equivalent to the Longest Common Subsequence (LCS) problem of two
binary sequences. We derive a differential equation which links the mean LCS-curve to
the average speed of the particles given their density and prove that the average speed of the
particles and density converges uniformly on every scale which is somewhat larger than

√
n.

Keywords Longest common subsequence · Interacting particle systems · Optimal
sequence alignment

1 Introduction

A common subsequence of two strings S1 and S2 is a sequence which is a subsequence of
S1 as well as of S2. A Longest Common Subsequence (LCS) of S1 and S2 is a common
subsequence of S1 and S2 of maximal length.

Let us give a numerical example. Take the two strings S1 = alaman and S2 = allemand.
Both of these string derive from the name of a Germanic tribe of the Allamans. (S1 is a small
town close to Lausanne. The second string means German in French.) The LCS of S1 and S2
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is given by alman. The length of the LCS is relatively long which indicates a high degree of
similarity between S1 and S2. We can represent the LCS alman by an alignment with gaps.
We align all the letters which appear in the LCS whilst the other letters get aligned with
gaps:

a l a m a n

a l l e m a n d

LCS are thus used to recognize similar strings. The method can also be modified a little.
Instead of looking for the same subsequence in S1 and S2 one could search for similar
subsequences. This is done by a scoring function which associates with each pair of letters
a score where a high score indicates a high similarity between letters. One looks then for
an alignment which maximizes the total score. The total score is obtained as the sum of
the scores of the aligned pairs of letters minus a penalty for the total number of gaps. The
alignment we find in this way is called optimal alignment.

LCS and optimal alignments are some of the main methods used in modern computa-
tion biology as well as computational linguistics. For an overview of the former topic see
[21, 23]. Despite the practical importance of the field, many mathematical question have not
yet been answered rigorously.

Let S1 and S2 to be two binary i.i.d. strings of length n independent of each other. Let
Ln designate the length of the LCS of S1 and S2. A simple subadditivity argument was
used by Chvatal and Sankoff [6] to prove that E[Ln]/n converges as n goes to infinity.
However, the exact value of the limit remains unknown up to this day. We can also consider
strings of different lengths. Fix p ∈ [0.5,2]. If S1 has length np and S2 has length n, we
denote by Ln(p) the length of LCS of S1 and S2. Again assuming that they are i.i.d. binary
strings independent of each other, the same subadditivity argument implies that E[Ln(p)]/n

converges. Let us designate the limit by ϕ(p):

ϕ(p) := lim
n→∞

E[Ln(p)]
n

.

Again for non-trivial values of p the exact value of ϕ(p) is not known.
The LCS problem can be viewed as a last passage percolation problem with correlated

weights. For this let f : {0,1}2 → {0,1} designate the map such that

f (0,0) = f (1,1) = 1, f (0,1) = f (1,0) = 0.

Now our last passage percolation goes as follows: we look for a path π on N × N which
goes from the origin to the point (n,n) ∈ N. Assume that at each step, π moves one unit to
the right or one unit up or diagonally to the right and up by one unit at the same time. The
vertical and horizontal edges have weight 0 whilst the diagonal edges ((i, j), (i + 1, j + 1))

have weight

w(((i, j), (i + 1, j + 1))) := f (Xi+1, Yj+1).

Then the path with maximum weight corresponds to the LCS of X and Y . The maximum
weight gives the length of the LCS. In the last passage percolation language, the curve
p → ϕ(p) corresponds to the rescaled shape of the wet region.

In this article we introduce an interacting particle system in random media. In Sect. 2,
we explain heuristically that the function which gives the average speed of the particles
given the density uniquely determines the curve ϕ(p). In Sect. 3 we present the main result,
relating the average speed of the particles and their density to the LCS problem. In Sect. 4.1
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we give an heuristic argument leading to this result, and in Sect. 4.2 we provide a rigorous
proof.

For the limit we let the text length go to infinity. The speed converges if we always look
at the same proportion in the text. Having established the equivalence between the LCS-
problem and our interacting particle problem could prove useful for investigating the LCS-
problem more thoroughly: any bound on the speed of particles can now be translated in an
inequality for the mean LCS length. Connections between similar problems and interacting
particles systems have proven useful in other settings, see [1, 18, 19].

Let us mention a little bit more about the history of this problem:
As already mentioned, Chvatal and Sankoff [6] prove that the limit

γ := lim
n→∞

ELn

n

exists. The exact value of γ remains however unknown. Chvatal and Sankoff [6] derive up-
per and lower bounds for γ , and similar upper bounds were found by Baeza-Yates, Gavalda,
Navarro and Scheihing [5] using an entropy argument. These bounds have been improved
by Deken [8], and subsequently by Dancik and Paterson [7, 17]. For sequences with many
equiprobable letters, Kiwi, Loebl and Matousek [12] determined the asymptotic value of γ .

Arratia and Waterman [4] derive a law of large deviation for Ln for fluctuations on scales
larger than

√
n. This is very useful and shows that in no case the fluctuation of the optimal

score can be larger than order
√

n.
Using the first passage percolation methods, Alexander [2] proves that ELn/n converges

at a rate of order
√

logn/n. As mentioned, a long open standing problem in the LCS context
is to determine the exact order of the fluctuation of the LCS length. Steele [20] proved
that VarLn ≤ n. Monte Carlo simulations led Chvatal and Sankoff [6] to conjecture that
VarLn = O(n2/3). Waterman [22] conjectured that for i.i.d. sequences the variance of Ln

grows linearly.
Matzinger and Lember [14] determined the order of magnitude of the fluctuation of Ln

when one sequence is not random but periodic. They were also able to determine [13] that
the order of Var[Ln] is equal to n when the binary i.i.d. sequences are such that one and
zero have very different probabilities. Houdre, Lember and Matzinger [11] determined the
asymptotic distribution of the Longest Increasing Common Subsequence of two i.i.d. se-
quences of length n. Amsalu, Matzinger and Popov [3] discovered a fundamental relation-
ship between transversal fluctuation and macroscopic uniqueness. Several of the previous
mentioned papers are based on a combinatorial approach using m-matches and large de-
viation developed by Martinez, Matzinger and Hauser [10] and by Matzinger, Hauser and
Durringer [9]. In these papers the authors present a Monte Carlo based method to bound the
constant γ and the curve p → ϕ(p).

2 Particle Process and LCS

2.1 The Particle Process

We now describe the interacting particle process on a random media. Time is discrete. The
media we consider is denoted by

X : N → {0,1}; s �→ Xs.
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The particles are located on N = {1,2, . . .}. There can never be two particles on the same
location. Particles can only move to the left (but not necessarily to the nearest neighbour)
and can not jump over one another. Also, new particles can appear. At every step, to decide
how the particles move, we flip a fair coin. One side of the coin is denoted by 0, the other
by 1. The same coin flip is used for all the particles at the same time. The particles move to
a position in the media which has the same value as the outcome of our flip in the following
way. Suppose that at time t we have some particles and the outcome of the t + 1 coin
flip is Yt+1. Then each particle looks at the current configuration and chooses for itself
the leftmost available position which has the value Yt+1 and then all the particles jump
simultaneously to the chosen positions. A new particle appears at the leftmost position which
has the value Yt+1 and no particles to the right.

Let us look at a numerical example. Take X = 10000011 . . . . Hence

Xi 1 0 0 0 0 0 1 1 . . .

i 1 2 3 4 5 6 7 8 . . .

Assume now that at time t , we have particles distributed as follows on the media X:

• • • • . . .

1 0 0 0 0 0 1 1 . . .

where an “•” designates a position occupied by a particle. Hence we have a particle in 1, 4,
6, 8 at time t . Assume now that Yt+1 = 0. This means that all the particles which are going to
move must do so to a point with color 0, thus at time t + 1 the configuration of our particles
will be

• • • • . . .

1 0 0 0 0 0 1 1 . . .

Let us now define formally the particle process. Let ηi(t) ∈ N ∪ {+∞} be the position of
i-th particle at time t . For convenience we suppose that there is an infinite reservoir with
particles at +∞. The initial configuration is ηi(0) = +∞ for all i (i.e., there are no particles
in N). Assume that ηi(t) = s1, ηi+1(t) = s2, where s1 < s2 ≤ +∞. That is, at time t there is a
particle at s1 and one at s2, but no particle in between; if s2 = +∞, then there are no particles
to the right of s1. Let a ∈ {0,1}. Suppose that when we flip the coin for the (t + 1)-th time
we obtain Yt+1 = a. Then, we have:

– If for all s such that s1 < s < s2, we have Xs 	= a, then ηi+1(t + 1) = s2 (at time t + 1, the
particle configuration on [s1 + 1, s2] is the same as at time t ).

– If there exist s such that s1 < s < s2 and Xs = a, then ηi+1(t + 1) = s(a), where

s(a) = min
s1<s<s2

{s : Xs = a}. (2.1)

Note that for nontrivial X1X2 . . . at time t we have t particles in N.

2.2 Connection Between LCS and the Particle Process

Let X1X2 . . . and Y1Y2 . . . be i.i.d. binary sequences independent from each other. Denote
by

L(X1X2 . . .Xs;Y1Y2 . . . Yt )
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the length of the LCS of X1X2 . . .Xs and Y1Y2 . . . Yt and let

Ft(s) = L(X1X2 . . .Xs;Y1Y2 . . . Yt ).

For every s ∈ N such that

Ft(s) > Ft(s − 1), that is, Ft (s) = Ft(s − 1) + 1,

we say that there is a particle located in point s at time t . Note that with this definition Ft(s)

is equal to the number of particles located in the interval [0, s] at time t . In this section we
show that these particles follow the same motion mechanism as the particles described in
the previous section. Take X = X1X2 . . . as random media on which the particles move and
Yt+1 is the coin we flip to decide what the configuration at time t + 1 will be. Let us first
show an example before we explain why the particle process defined by Ft(s) has the same
evolution mechanism than the particle process in the previous section.

Let X1 = 0, X2 = 0, X3 = 1 and X4 = 1. Hence, X = 0011 . . . . Assume that Y1 = 0,
Y2 = 1, Y3 = 1 and Y4 = 1. Then:

L(∅, Y1Y2Y3Y4) = F4(0) = 0,

L(X1, Y1Y2Y3Y4) = F4(1) = 1,

L(X1X2, Y1Y2Y3Y4) = F4(2) = 1,

L(X1X2X3, Y1Y2Y3Y4) = F4(3) = 2,

L(X1X2X3X4, Y1Y2Y3Y4) = F4(4) = 3.

We see that the map s �→ F4(s) has a point of increase in s = 1,3,4. Hence there is a particle
in point s = 1, s = 3, s = 4 whilst the point s = 2 is empty at time t = 4.

Hence at time t = 4 the particle configuration we have is

• • •
0 0 1 1

Assume now that Y5 = 0. First look at the particle configuration. The new configuration
(according to the rules for the dynamics of the particles in the previous section) at time 5 is
thus:

• • •
0 0 1 1

It is immediate to check that the map s �→ F5(s) has points of increase in s = 1,2,4. Hence,
at time t = 5 there are particles in point 1, 2 and 4. Note that this is the particle configuration
we found using the particle dynamics mechanism. See Fig. 1 for the dynamics for t ≤ 5.

Let us now give a rigorous proof of the fact that the particle process defined via the
function Ft(s) follows the dynamics described in the previous section.

Lemma 2.1 Suppose that we have constructed the particle configuration ηi(t), i = 1,2 . . .

for X = X1 . . .Xs and Y = Y1 . . . Yt (configuration at time t ). Then, the new particle config-
uration for X = X1 . . .Xs and Y ′ = Y1 . . . YtYt+1, where Yt+1 = a ∈ {0,1}, is obtained from
the previous one in the following way:
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Fig. 1 Particles trajectories for X = 0011 . . . and Y = 01110 . . . . The double circles correspond to the new
particles

• If there exists s, 0 < s < η1(t), such that Xs = a, then

η1(t + 1) = s
(a)

1 ,

where

s
(a)

1 = min
0<s<η1(t)

{s : Xs = a}.

Otherwise, η1(t + 1) = η1(t).
• If there exists s, ηi(t) < s < ηi+1(t), such that Xs = a, then

ηi+1(t + 1) = s
(a)

i+1,

where

s
(a)

i+1 = min
ηi (t)<s<ηi+1(t)

{s : Xs = a}.

Otherwise, ηi+1(t + 1) = ηi+1(t).

Proof Suppose that ηi = l, ηi+1 = l′, Xk = a for some k, l < k < l′, and Xm 	= a for all m,
l < m < k. We want to show that in this case the particle which was at l′ will jump to k,
when we add a at the end of sequence Y . We look at the LCS as an optimal alignment of
two sequences, where letters corresponding to the LCS are aligned.

As there are no particles between l and k, there exists an optimal alignment (LCS) of
X1 . . .Xk and Y1 . . . Yt which uses only X1 . . .Xl part of X1 . . .Xk ,

L(X1 . . .Xk,Y1 . . . Yt ) = L(X1 . . .Xl, Y1 . . . Yt ). (2.2)

That is, this alignment does not use Xk . So, we can construct an optimal alignment of
X1 . . .Xk and Y1 . . . Yta by taking the previous alignment of X1 . . .Xl and Y1 . . . Yt and align-
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ing Xk = a with Yt+1 = a. This way, we get

L(X1 . . .Xk,Y1 . . . Yta) = L(X1 . . .Xk,Y1 . . . Yt ) + 1. (2.3)

Take some m, l < m < k. As there were no particles between l and l′, and X(m) 	= a for all
m, l < m < k, we have

L(X1 . . .Xm,Y1 . . . Yta) = L(X1 . . .Xm,Y1 . . . Yt )

= L(X1 . . .Xl, Y1 . . . Yt )

= L(X1 . . .Xm−1, Y1 . . . Yta), (2.4)

by the same argument that leads to (2.2). So, there will be no particles at positions l +
1, . . . , k − 1. Also, by (2.2), (2.3) and (2.4),

L(X1 . . .Xk,Y1 . . . Yta) = L(X1 . . .Xl, Y1 . . . Yt ) + 1

= L(X1 . . .Xk−1, Y1 . . . Yta) + 1,

and thus there will be a particle at position k. (Note that the same argument applies to the
new particle at the leftmost position corresponding to letter a in the sequence X such that
there are no particles to the right of this position.)

It remains to prove that there will be no particles at k + 1, . . . , l′. Suppose that we have a
particle at m, m < l′. Then we have

L(X1 . . .Xm,Y1 . . . Yta) > L(X1 . . .Xm−1, Y1 . . . Yta).

Suppose first that there exists an optimal alignment of X1 . . .Xm and Y1 . . . YtYt+1 in which
Xm is not aligned to Yt+1 = a. Then we have

L(X1 . . .Xm,Y1 . . . Yta) = L(X1 . . .Xm,Y1 . . . Yt ),

thus,

L(X1 . . .Xm,Y1 . . . Yt ) > L(X1 . . .Xm−1, Y1 . . . Yta)

≥ L(X1 . . .Xm−1, Y1 . . . Yt ),

which contradicts the assumption that at time t there was no particle at m.
So, we should have X(m) = a and X(m) should be aligned to Yt+1 for any optimal

alignment of X1 . . .Xm and Y1 . . . YtYt+1. In this case, we have

L(X1 . . .Xm,Y1 . . . Yta) = L(X1 . . .Xm,Y1 . . . Yt ) + 1

= L(X1 . . .Xl, Y1 . . . Yt ) + 1

= L(X1 . . .Xk,Y1 . . . Yta)

analogously to (2.2) and (2.3). Thus, there is in fact no particle at m. Consider now m = l′
and suppose that there is a particle at l′. Suppose again that there exists an optimal alignment
of X1 . . .Xl′ and Y1 . . . YtYt+1 in which Xl′ is not aligned to Yt+1 = a. Then,

L(X1 . . .Xl′ , Y1 . . . Yta) = L(X1 . . .Xl′ , Y1 . . . Yt )
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= L(X1 . . .Xl′−1, Y1 . . . Yt ) + 1

= L(X1 . . .Xk,Y1 . . . Yt ) + 1

= L(X1 . . .Xk,Y1 . . . Yta)

which means that there is no particle at l′. If Xl′ is aligned to Yt+1 for any optimal alignment
of X1 . . .Xl′ and Y1 . . . YtYt+1, we get again

L(X1 . . .Xl′ , Y1 . . . Yta) = L(X1 . . .Xl′−1, Y1 . . . Yt ) + 1

= L(X1 . . .Xk,Y1 . . . Yt ) + 1

= L(X1 . . .Xk,Y1 . . . Yta).

Thus, there is no particle at l′ and Lemma 2.1 is proved. �

3 Main Result

Let us first define the speed (or rather average speed) V . Let

s = max{ηi(n) : ηi(n + n�) ≤ np},
that is, s is the position of the rightmost particle at time t = n which reaches [0, np] within
the time interval [n,n + n�]. Let

V = V (p,�,n) := s − np

n�
.

Similarly we define the average density �a to be the number of particles in the interval
[np, s] at time t = n divided by s − np. Noting that by definition s = np + V n�, we obtain

�a = �a(p,�,n) := Fn(np + V n�) − Fn(np)

V n�
. (3.1)

It is easy to see that for p ∈ [0,1/2] we have ϕ(p) = p, and for p ∈ [2,∞[ we have
that ϕ(p) = 1. (Indeed, for such values of p, the length of one sequence is at most half
of the length of the other, and thus, in the limit, the proportion of the symbols of smaller
sequence used in the LCS will be 1. This gives ϕ(p) = p for p ∈ [0,1/2], and ϕ(p) = 1 for
p ∈ [2,∞[.) This means that in the interval [0, n/2] at time t = n the particles are dense and
there are no holes. Hence the speed of the particles in that region is zero. Above the point
2n the particles are extremely rare, so if a particle would be there it would have a lot of free
space to move and its speed might not be bounded above. It seems however reasonable to
assume that for any p1,p2 such that

0.5 < p1 < p2 < 2 (3.2)

and every β1, β2 such that

0 < β1 < β2 < 0.5, (3.3)

there exists a compact interval [c1, c2], 0 < c1 < c2 < ∞, where c1 and c2 are constants
not depending on p or β such that for all n large enough, for all p ∈ [p1,p2] and for all
β ∈ [β1, β2], taking � = nβ−0.5, we have a.s. V (p,�,n) ∈ [c1, c2].
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Also, it is generally believed (see e.g. the discussion in [3]) that the function ϕ(·) should
be “well-behaved”. On the other hand, it seems to be extremely difficult task to prove rigor-
ously something concrete about the differentiability properties of this function; this situation
is quite usual in the problems related to percolation, where one usually easily obtains the
existence of critical curves (surfaces) in the parameter space, but the fine analysis of these
objects can be almost unreachable (see e.g. [16]).

In view of the above discussion, it is reasonable to assume the following. Let [p1,p2] ⊂
]0.5,2[, [β1, β2] ⊂ ]0,0.5[ and � = nβ−0.5.

(A1) Suppose that ϕ is twice continuously differentiable on an open interval containing
[p1,p2] and ϕ as well as ϕ′ are both bounded away from zero on that interval.

(A2) Suppose that there exists c1, c2, 0 < c1 < c2 < ∞, such that for all n larger than some
(random) n′ we have

V (p,�,n) ∈ [c1, c2]. (3.4)

Theorem 3.1 Assume (A1) and (A2). Then, there exists (random) n0 such that for all n ≥
n0, for all p ∈ [p1,p2] and all β ∈ [β1, β2] we have a.s.

|�a(p,�,n) − ϕ′(p)| ≤ Cnα
√

logn (3.5)

and
∣∣∣∣V (p,�,n) −

(
ϕ(p)

ϕ′(p)
− p

)∣∣∣∣ ≤ Cnα
√

logn, (3.6)

where α := max{β − 0.5,−β} (note that α < 0), � = nβ−0.5, and C > 0 is a constant not
depending on n.

4 Proof of the Main Result

4.1 Heuristics

4.1.1 Fundamental Equality

In this section, we heuristically derive the fundamental differential equation which links
ϕ(p) to the speed of the particles. We assume here that the speed of the particles in a cer-
tain region converges as n goes to infinity. This makes the argument more intuitive. In the
Sect. 4.2, we prove the result rigorously without making this assumption.

Consider the following intuitive reasoning. When particles flow through a conductor with
speed V , how many have passed a given point after time �t? Assuming that the particle
density is � and that the speed V is constant, the answer is �V �t .

We are going to use the same reasoning applied to our situation.
We consider by how much that number of particles in the interval [0, np] increases be-

tween time t and t +�t . (Here p is a positive constant which does not depend on n.) Assume
that in the neighborhood of point np at time t the density of particles is � and the average
speed is V , we find that during the time interval [t, t +�t] there are �V �t particles entering
the interval [0, np]. Hence

Ft(np) + �V �t = Ft+�t (np). (4.1)
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We replace t by n and �t by � · n, before dividing (4.1) by n. This yields:

Fn(np)

n
+ �V � = (1 + �)

Fn+�n((n + �n)
p

1+�
)

n + �n
. (4.2)

As mentioned it is known that Ft(tp)/t converges as t goes to infinity and we denote the
limit by ϕ(p):

ϕ(p) = lim
t→∞

Ft(tp)

t
.

Thus, letting t go to infinity whilst leaving � fixed, we have:

lim
n→∞

Fn(np)

n
= ϕ(p) (4.3)

and

lim
n→∞

Fn+�n((n + �n)
p

1+�
)

n + �n
= ϕ

(
p

1 + �

)
.

Using the above limits and letting n go to infinity in (4.2), we find

ϕ(p) + lim
n→∞�V � = (1 + �)ϕ

(
p

1 + �

)

from which we obtain

ϕ(p) − ϕ(
p

1+�
)

�
+ lim

n→∞�V = ϕ

(
p

1 + �

)
. (4.4)

Assuming that ϕ is differentiable and letting � go to zero, equality (4.4) becomes

pϕ′(p) + lim
�→0

lim
n→∞�V = ϕ(p). (4.5)

It only remains to see what happens to the average particle density � at the limit. Note for
this that the average particle density is simply the number of particles divided by the length
of the interval. The interval we consider is [np,np + V �n]. The length of this interval is
V �n whilst the number of particles in this interval at time t = n is equal to Fn(np+V �n)−
Fn(np). This implies that the average particle density � of this interval at time n is equal to

�(n,�,p) = Fn(np + V �n) − Fn(np)

V �n
. (4.6)

Letting n go to infinity, we find that

lim
n→∞

Fn(np + V �n)

n
= ϕ(p + V �). (4.7)

Using (4.7) and (4.3) in (4.6), we find:

lim
n→∞�(n,�,p) = ϕ(p + V �) − ϕ(p)

V �
.



Thermodynamical Approach to the Longest Common Subsequence 1113

Assuming that ϕ has a derivative, the last expression above goes to ϕ′(p) as � goes to zero.
Hence:

lim
�→∞ lim

n→∞�(n,�,p) = ϕ′(p).

We find thus an interpretation for the derivative of ϕ(p): the particle density at the limit.
Going back to (4.5) and plugging in our expression for the limit of � we get

pϕ′(p) + ϕ′(p)V = ϕ(p) (4.8)

which we can also write as

pϕ′(p) + ϕ′(p)V (p) = ϕ(p). (4.9)

In this derivation of the fundamental equality (4.8), the only thing not rigorous is that we
treated the speed of the particles V (p) as a constant not depending on n and �.

4.1.2 Velocity/Density Map Determines Expected LCS-Curve

In this section we describe heuristically the ideas behind the proof of the fact that if we know
the velocity V as a function of the density �, then this uniquely determines the map ϕ(p).

We assume for the moment that the density at the limit is a function of p and that this
function is a bijection. We can then express the velocity of the particles near np in terms of
the density. Let W denote the speed as function of the density �. Hence, W(�) := V (p(�))

and hence W = V ◦ �−1, where �−1 denotes the inverse function of p → �(p). Equation
(4.8) becomes

pϕ′(p) + ϕ′(p)W(�(p)) = ϕ(p).

Taking the derivative with respect to p in the last equation above yields

pϕ′′ + ϕ′′W(�) + ϕ′�′W ′(�) = 0.

Recall that ϕ′ = � and hence the last equation above can be written as

pϕ′′ + ϕ′′W(�) + �ϕ′′W ′(�) = 0.

Assuming ϕ′′ bounded from 0, we have that

p + W(�(p)) + �(p)W ′(�(p)) = 0. (4.10)

If we define the map G as follows:

G(s) := W(s) + sW ′(s)

and assuming that W is invertible, (4.10) yields

�(p) = G−1(−p) (4.11)

which finally gives (assuming that G−1(−s) is integrable)

ϕ(p) =
∫ p

0
G−1(−s)ds. (4.12)

The last equation allows us to obtain ϕ from the map W .
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4.2 Proof of Theorem 3.1

In the previous section, we derived heuristically the fundamental equality (4.8). It was not a
rigorous proof because we implicitly assumed the speed to converge when we hold � fixed
and let n go to infinity. In this section we present a formal proof. By our assumption, ϕ is
differentiable, let designate by � the derivative of ϕ:

�(p) = ϕ′(p).

(At this stage we don’t make any assumption that �(p) represents the particle density at the
limit.) In order to simplify notation, we write V for V (p,�,n), �a for �a(p,�,n) and �

for �(p).
In what follows we will need to define a certain number of approximation errors (in what

follows, all error terms depend on n,�,p). Let us define them at this stage:
Let ε1, ε2, ε3, ε4, ε5, ε6 be defined by:

ε1 := Fn(np)

n
− ϕ(p), (4.13)

ε2 := Fn+�n((n + �n)
p

1+�
)

n + �n
− ϕ

(
p

1 + �

)
, (4.14)

ε3 := Fn(np + V �n)

n
− ϕ(p + V �), (4.15)

ε4 := ϕ(p) − ϕ
(

p

1+�

)

�
− pϕ′(p), (4.16)

ε5 := ϕ

(
p

1 + �

)
− ϕ(p), (4.17)

ε6 := ϕ(p + �V ) − ϕ(p)

�V
− ϕ′(p). (4.18)

The same argument which leads to equality (4.2) applied to the current definition of �a and
V yields:

Fn(np)

n
+ �aV � = (1 + �)

Fn+�n((n + �n)
p

1+�
)

n + �n
.

Using (4.13) and (4.14) in the previous equation, we find:

ϕ(p) + ε1 + �aV � = (1 + �)

(
ϕ

(
p

1 + �

)
+ ε2

)
,

which yields

ϕ(p) − ϕ(
p

1+�
)

�
+ �aV = ϕ

(
p

1 + �

)
+ ε2 + ε2

�
− ε1

�
.

With the help of (4.16) and (4.17) the last equality above becomes:

pϕ′(p) + �aV = ϕ(p) + ε2 + ε2

�
− ε1

�
− ε4 + ε5.
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Let ε be equal to

ε = ε2 + ε2

�
− ε1

�
− ε4 + ε5, (4.19)

so that we get:

pϕ′(p) + �aV = ϕ(p) + ε. (4.20)

Applying (4.13) and (4.15) to the definition (3.1) of �a , we find

�a = ϕ(p + V �) − ϕ(p)

V �
+ ε3

V �
− ε1

V �

and hence with the help of (4.18) we get

�a = ϕ′(p) + ε6 + ε3

V �
− ε1

V �
. (4.21)

Let εa denote the error-term:

εa = ε6 + ε3

V �
− ε1

V �

so that

�a = ϕ′(p) + εa. (4.22)

Note that when εa goes to zero then �a goes to ϕ′(p). When ε also converges and ϕ′(p) 	= 0,
then it follows from (4.20) that V (p,�,n) converges. Hence, the limit V (p) satisfies then
(4.9). It remains thus to investigate when ε and εa converge.

We are going to show that, by a concentration inequality and a speed of convergence
theorem, we have that ε1, ε2 and ε3 are approximately of order 1/

√
n. For ε3 to be of that

order we also need a constant upper bound on V .
Assuming that ϕ is twice continuously differentiable, we find that, as � goes to zero,

the error terms ε4, ε5 and ε6 are of order �. To prove that ε6 is of order � we also need a
constant upper bound on V .

Looking at the expressions for ε and εa ,we see thus that for convergence we need εi/�

for i = 1,2,3 to converge to zero and V to be bounded away from zero. Roughly speaking,
this means that we have to take � that converges somewhat slower than 1/

√
n whilst making

sure V is in a compact interval away from zero.
Let us return to (4.20) which can be rewritten as

V = 1

�a

(−pϕ′(p) + ϕ(p) + ε). (4.23)

From (4.22) it follows that

1

�a

− 1

ϕ′(p)
= −εa

�aϕ′(p)
.

With the help of (4.22) equality (4.23) becomes

V (p,�,n) = −p + ϕ(p)

ϕ′(p)
+ εv, (4.24)



1116 S. Amsalu et al.

where

εv := ε

�a

+ −εa

�aϕ′(p)
(−pϕ′(p) + ϕ(p)). (4.25)

Clearly when εa and ε both converge to zero and assuming that ϕ′(p) and �a are bounded
away from zero, we get that εv also converges to zero. This then yields that V converges to
−p + ϕ(p)/ϕ′(p).

To prove the Theorem 3.1, we need, among others, to show that Fn(nq)/n converges
sufficiently fast. We decompose Fn(nq)/n − ϕ(q) into two parts:

Fn(nq)

n
− ϕ(q) =

(
Fn(nq)

n
− E[Fn(nq)]

n

)
+

(
E[Fn(nq)]

n
− ϕ(q)

)
.

The next lemma deals with the first part of the sum above.

Lemma 4.1 For all q1, q2, such that 0 < q1 < q2 < ∞, there exists K > 0 such that a.s. for
all n large enough and for all q ∈ [q1, q2] we have

∣∣∣∣
Fn(nq)

n
− E[Fn(nq)]

n

∣∣∣∣ ≤ K

√
logn√

n
. (4.26)

This lemma is an immediate consequence of the Borel-Cantelli lemma and the following
proposition (a version of which can be found, for example, in McDiarmid [15]).

Proposition 4.1 Let m ∈ N. Let W1,W2, . . . be a sequence of i.i.d. variables taking values
in a set A. Suppose that f (w1,w2, . . . ,wm) is a function from Am to R with the property
that changing any of the arguments of f while holding the others fixed changes the value of
f by a quantity whose absolute value is less or equal to c > 0. Then for all ε > 0 we have

P (|f (W1, . . . ,Wm) − E[f (W1, . . . ,Wm)]| ≥ ε) ≤ 2e−2ε2/(mc2).

The next lemma we need is

Lemma 4.2 For all q1, q2, such that 0 < q1 < q2 < ∞, there exists K > 0 such that for all
n large enough and for all q ∈ [q1, q2] we have

∣∣∣∣ϕ(q) − E[Fn(nq)]
n

∣∣∣∣ ≤ K

√
logn√

n
. (4.27)

The similar result can be found in [2]. His proof is applicable to our case (see remark in the
end of Sect. 2 of [2]), with just few small changes.

We are now ready to finish the proof of Theorem 3.1. We first prove (3.5). For this let
0 < q1 < q2 < ∞ be such that ϕ(p) ∈ C2[q1, q2] and

q1 < p1,p2 < q2. (4.28)

Then, because of (4.26), (4.27), and (4.28) we find that for all n (random) large enough and
for all p ∈ [p1,p2] it holds

|ε1| ≤ 2K

√
logn√

n
. (4.29)
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Note that since β ∈ [β1, β2] we find that

� ≤ nβ2−0.5, (4.30)

where nβ2−0.5 goes to zero as n goes to infinity since we assumed that β2 < 0.5.
Hence, since we also assumed V to be bounded uniformly (see (3.4)), for all n large

enough and for all p ∈ [p1,p2], we have that p + V � ∈ [q1, q2]. Hence again inequalities
(4.26) and (4.27) apply and we find

|ε3| ≤ 2K

√
logn√

n
. (4.31)

As ϕ(p) ∈ C2[q1, q2], the second derivative of ϕ(·) is bounded on [q1, q2]. Denote by K6

the maximum

K6 := max
p∈[q1,q2]

|ϕ′′(p)|.

As mentioned, for n (random) large enough we have that p+V � is in [q1, q2]. By the Mean
Value Theorem, we have then that

|ε6| ≤ K6�V

and hence with the help of (3.4), we get

|ε6| ≤ K6c2n
β−0.5. (4.32)

Using now the bound (4.29) and (3.4), we obtain the inequality

∣∣∣
ε1

V �

∣∣∣ ≤ 2K

√
logn√

n
· 1

c1nβ−0.5

and hence
∣∣∣

ε1

V �

∣∣∣ ≤ 2K

c1

√
logn n−β. (4.33)

In the same way we obtain
∣∣∣

ε3

V �

∣∣∣ ≤ 2K

c1

√
logn n−β. (4.34)

Together, (4.32), (4.33), (4.34) and imply that

|εa| ≤ C1n
α
√

logn (4.35)

where we take

C1 := K6c2 + 4K

c1
.

Then, (4.35) and (4.22) together imply inequality (3.5).
We are now going to prove the bound (3.6). We chose q1 and q2 in the same way as

was done in the previous computations. Because � goes to zero uniformly when n goes to
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infinity (see inequality (4.30)), there exists n0 such that for all n ≥ n0, for all p ∈ [p1,p2]
and all β ∈ [β1, β2] we have

p

1 + �
∈ [q1, q2].

Hence, inequality (4.26) and (4.27) apply, and we obtain that for all n large enough

|ε2| ≤ 2K

√
log(n + �n)√

n + �n
≤ 2K

√
log(n + �n)√

n
. (4.36)

Also, we may assume that for n large enough n + �n ≤ 2n. This assumption together with
(4.36) implies

|ε2| ≤ 4K

√
logn√

n
(4.37)

which also leads to
∣∣∣
ε2

�

∣∣∣ ≤ 4K
√

lognn−β. (4.38)

For the same reasons we obtain
∣∣∣
ε1

�

∣∣∣ ≤ 2K
√

logn n−β. (4.39)

Next consider the map

x �→ ϕ

(
p

1 + x

)
.

Obviously there exists an interval [a, b], such that 0 ∈ (a, b), −1 /∈ [a, b], and such that for
all x ∈ [a, b] we have p/(1+x) ∈ [q1, q2]. The above map is then well defined and it is twice
continuously differentiable on [a, b]. Since we know that � goes to zero uniformly and 0 ∈
(a, b), we have that for all n large enough and all β ∈ [β1, β2], we get � ∈ [a, b]. Let c3 > 0
designate the maximum of the absolute value of the second derivative of ϕ(p/(1 + x)):

c3 := max
x∈[a,b]

{∣∣∣∣
d2ϕ(p/(1 + x))

d2x

∣∣∣∣

}
.

By Taylor’s formula, we obtain

ϕ

(
p

1 + �

)
= ϕ(p) + d

dx
ϕ

(
p

1 + x

)∣∣∣∣
x=0

� + 1

2

d2

dx2
ϕ

(
p

1 + x

)∣∣∣∣
x=ξ

�2

= ϕ(p) − pϕ′(p)� + 1

2

d2

dx2
ϕ

(
p

1 + x

)∣∣∣∣
x=ξ

�2

where 0 < ξ < �. Thus,

|ε4| =
∣∣∣∣
ϕ(p) − ϕ(p/(1 + �))

�
− pϕ′(p)

∣∣∣∣

≤
∣∣∣∣∣
1

2

d2

dx2
ϕ

(
p

1 + x

)∣∣∣∣
x=ξ

�

∣∣∣∣∣
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≤ c3�

= c3n
β−0.5 (4.40)

for all n large enough and for all β ∈ [β1, β2].
Finally, since � goes to zero uniformly, we find that for all n large enough and all β ∈

[β1, β2] we have p/(1 + �) ∈ [q1, q2]. By the Mean Value Theorem, we obtain

|ε5| ≤ c5� = c5n
β−0.5, (4.41)

where

c5 := max
p∈[q1,q2]

|ϕ′(p)|.

Looking at the definition (4.19) of the error term ε as well as the inequalities (4.37)–
(4.41), we obtain

|ε| ≤ C2

√
logn nα, (4.42)

where α = max{β − 0.5,−β} and C2 is the constant

C2 := 10K + c3 + c5.

Let β3 be equal to β3 := −max{β2 − 0.5,−β1}. Note that β3 > 0 and, since β ∈ [β1, β2], we
have

nα ≤ n−β3 . (4.43)

Hence, inequality (4.42) reads

|ε| ≤ C2

√
logn n−β3 , (4.44)

where the right-hand side converges to zero and does not depend on β . We assumed that for
p in an open interval containing [p1,p2] the derivative ϕ′ is bounded below. Hence we get
that there exists a constant c7 > 0, such that for all p ∈ [p1,p2] we have

1

ϕ′(p)
≤ c7. (4.45)

We have proved in (4.35), that the difference between �a and ϕ′(p) is less than a C1n
α
√

logn

for n large enough and all β ∈ [β1, β2] and p ∈ [p1,p2]. Hence from our last comment above
it follows that this difference is less than

√
logn n−β3 . Hence, ϕ′(p) being bounded below,

we obtain that for large enough n, �a is also bounded below. Hence, we get a uniform bound
for all n large enough and all β ∈ [β1, β2] and p ∈ [p1,p2]:

1

�a

≤ c8. (4.46)

Since [p1,p2] is a compact interval and since ϕ(p) is continuously differentiable on it,
we have that ϕ and ϕ′ are both bounded from above and below on [p1,p2]. Hence, so is
−pϕ′(p) + ϕ(p). Hence there exists c9 > 0 so that for all p ∈ [p1,p2] we have

| − pϕ′(p) + ϕ(p)| ≤ c9.



1120 S. Amsalu et al.

Looking at the definition (4.25) of εv and using the last inequality above as well as (4.45)
and (4.46), we find

|εv| ≤ c8|ε| + c7c8c9|εa|.
Using (4.42) and (4.35), in the last inequality above, yields

|εv| ≤ C3

√
logn nα, (4.47)

where

C3 := c8C2 + c7c8c9C1.

Inequality (4.47) together with (4.24), imply (3.6). This then finishes the proof of our main
theorem.
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